Graphene layer reinforcing mesoporous molybdenum disulfide foam as high-performance anode for sodium-ion battery

Jiao Deng¹, Cheng Zeng¹, Chao Ma¹, Jon Fold von Bülow⁵, Lei Zhang¹,²,³, Dehui Deng¹,⁴, Zhongqun Tian¹, Xinhe Bao⁵

¹ State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
² Key Lab of Heat Transfer Enhancement and Energy Conservation of Ministry of Education, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
³ State Key Laboratory of Catalysis, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, China
⁴ Center for High Resolution Electron Microscopy, College of Materials Science and Engineering, Hunan University, Changsha, 410082, China
⁵ Haldor Topsoe A/S, Haldor Topsøes Allé 1, DK-2800, Kgs. Lyngby, Denmark

Abstract

Sodium-ion batteries are currently being considered as a promising concept for large-scale energy storage. This is partly due to the low cost and abundance of sodium and the possibility to use cheaper parts on cell level such as current collector and electrolyte. As an important electrode in a safe rechargeable sodium-ion battery, the electrochemical activity on the anode involves a series of complex electrochemical processes. Therefore, new strategies for material design are required to promote each pivotal step in the optimization of battery performance. Herein, we present a multiscale design of a mesoporous MoS₂ foam with a coating of graphene layers as a highly efficient anode for sodium-ion batteries. The resulting composite material delivers impressive electrochemical performance in a half-cell versus metallic sodium with a high specific capacity for sodium ions and a stable performance during cycling for more than 1000 cycles. The strategy introduced in this study opens new opportunities, not only for the development of MoS₂ composite anode materials through a multiscale design to maintain high capacity and stability, but also for the development of other sodium-ion battery anode materials.

1. Introduction

Large-scale energy storage systems (ESS) have attracted great attention owing to the increasing energy crisis and environmental problems [1–3]. As an ESS concept, the sodium-ion battery (SIB) with the advantage of low cost, high natural abundance and wide global distribution of sodium resources, is a promising alternative to the lithium-ion battery (LIB) [3–8]. Although the SIB technology shares many similarities with LIB, it is in its commercial infancy and a substantial research activity has been focused on the development and improvement of electrode materials. The fact that e.g. commercial graphite, which is being used as an anode material in LIBs, has a very low capacity for accommodating sodium ions, makes the search for new suitable host materials necessary [9–11]. Carbonaceous materials such as hard and soft carbon are currently the most promising candidates for the anode in SIBs, because they exhibit an attractive voltage profile with stable performance, while being commercially available. However, the relatively low capacity of hard carbons with long cycle life hovers around 200–250 mA h g⁻¹ even at a low current density (e.g. 100 mA g⁻¹) [12,13], prompting the exploration into other material classes with higher capacity for sodium ions. Among the recent alternative anode materials [14–21], metal sulfides have attracted considerable interest due to their two-dimensional (2D) structure, possessing a larger layer spacing supporting the intercalation and de-intercalation of sodium ions and consequently a higher capacity [22–24]. For instance, 2D MoS₂ exhibits the S–Mo–S single layers held together by van der Waals...
interaction with large interlayer spacing (6.2 Å). This is beneficial to the reversible intercalation/de-intercalation of sodium ions into the weakly bound stacked layers with high mobility [25–38].

Previous studies have shown that it is of great importance to rationally design and fabricate a nanostructure of MoS2 which would otherwise exhibit unsatisfactory electrochemical performance of low capacity and poor cycling stability [39–41]. Different strategies for making nanostructures MoS2 have been considered, e.g., tuning morphologies with 1D to 3D structures [25,31], manufacturing hollow framework [35,36], and constructing composites with carbon materials [26,30]. However, either strategy alone only leads to limited performance improvement in the MoS2 anode materials, because a series of complex electrochemical processes are involved in the multi-components of the SIB anode. This requires a multiscale design of MoS2 (from nanometers to micrometers) to promote each pivotal step and thereby maximize the battery performance. It includes constructing sufficient channels for the sodium ion diffusion, facile contact for the electrolyte, abundant insertion/extraction sites for sodium ions, and preservation of the intrinsic structure of MoS2.

Herein, we present a multiscale design of a mesoporous MoS2 foam with a coating of graphene layers as a highly efficient anode for SIBs. The design can be described as follows: (a) uniform mesopores facilitate sodium ion diffusion and increase the contact probability of electrolyte with MoS2; (b) oriented vertical structures provide abundant edge sites for sodium ion insertion/extraction; (c) graphene layers coated onto the MoS2 structure enhance overall electrode conductivity meanwhile limiting the detrimental deformation of MoS2 during the discharge/charge process. The resulting composite material delivers an impressive discharge capacity of 488 mA h g⁻¹ at 100 mA g⁻¹ after 100 cycles in a half-cell versus metallic sodium. The composite is also able to deliver a reversible capacity of 200 mA h g⁻¹ at 1000 mA g⁻¹ after 1000 cycles.

2. Results and discussion

The synthesis procedure of graphene layers coating mesoporous MoS2 foam (mPF-MoS2@G) is illustrated in Fig. 1a. First, a direct chemical synthesis method was adopted to prepare the bare mesoporous MoS2 foam (mPF-MoS2). The (NH4)6Mo7O24 and CS2 were used as Mo and S sources, respectively, during the chemical reaction under 400 °C templated by colloidal SiO2 nanospheres. The mPF-MoS2 was obtained after etching the SiO2 template with HF (aq.). To further coat the graphene layers onto mPF-MoS2, dopamine was used as the carbon source for pre-coating, which was followed by annealing at 600 °C under Ar atmosphere. The final gained sample was thin graphene layers coating mesoporous MoS2 foam (see the experimental procedures section for details).

The transmission electron microscopy (TEM) image (Fig. 1b) and scanning electron microscopy (SEM) image (Fig. S1) exhibit that the mPF-MoS2 possesses a uniform mesoporous framework. Besides, these mesopores are interconnected throughout the entire 3D MoS2 foam at different orientations by 3D tomography (Fig. S2), which can facilitate the diffusion of sodium ions and increase electrolyte contact to the MoS2 surface during the discharge/charge processes. Furthermore, high resolution TEM (HRTEM) image (Fig. S3) and high resolution high-angle annular dark field-scanning transmission electron microscopy (HR-HAADF-STEM) image (Fig. 1c) distinctly display massive vertically aligned MoS2 layers, indicating a large number of edges are exposed which will provide more sites for the sodium ion insertion/extraction. After graphene layers coating, the mPF-MoS2@G still retains the structure of mesoporous foam according to the TEM and HAADF-STEM images (Fig. S4 and Fig. 1d). The energy-dispersive X-ray (EDX) maps show that the Mo, S and C elements were distributed homogeneously in the porous framework (Fig. 1d), illustrating the uniform coating of graphene layers on MoS2. In addition, through the HRTEM images (Fig. 1e and f), the contour lines of graphene layers around the mesoporous MoS2 can be clearly observed. The interlayer distance of 0.38 nm and 0.62 nm corresponding to the (002) planes of graphene and MoS2 on the two sides of the outline demonstrate that the graphene layers have been well coated onto the mesoporous MoS2 foam, and the graphene layers were quite thin with only few layers (Fig. 1f).

The thin graphene layers coating on the mesoporous foam can increase the overall electrode conductivity and provide a buffer space to withstand the detrimental deformation of MoS2 during the discharge/charge processes.

The thin feature of graphene layers outside the mPF-MoS2 can also be supported by the X-ray diffraction (XRD) patterns, showing no visible appearance of C (002) peak except for the diffraction peaks of hexagonal 2H-MoS2 after coating graphene layers (Fig. 2a).

Besides, these mesopores are interconnected throughout the entire 3D MoS2 foam at different orientations by 3D tomography (XANES) spectra and the extended X-ray absorption fine structure (EXAFS) spectra showing similar Mo valence state, Mo–S and Mo–Mo coordinate bonds (Fig. 2c). In addition, through the similar specific surface area and pore volume in mPF-MoS2 (96.4 m² g⁻¹, 0.654 cm³ g⁻¹) and mPF-MoS2@G (73.7 m² g⁻¹, 0.513 cm³ g⁻¹) (Fig. 2d), the mesoporous framework has been well preserved after the graphene layers coating. Moreover, the carbon content in mPF-MoS2@G was estimated to be 18.6 wt% as measured by the thermogravimetric analysis (TGA) (Fig. S6).

The electrochemical properties of the mPF-MoS2@G as the anode material for SIBs were investigated as shown in Fig. 3. Firstly, the cyclic voltammograms (CV) of the mPF-MoS2@G at a scan rate of 0.05 mV s⁻¹ over the voltage ranges of 0.05–3 V (vs. Na/Na⁺) were recorded for the initial five cycles (Fig. 3a). In the first cathodic scan, the peaks at 1.2 V and 0.8 V are related to the insertion of Na⁺ into MoS2 interlayers and the formation of solid-electrolyte-interphase (SEI) film owing to the decomposition of the electrolyte [25,33]. The inconspicuous peak at 0.35 V is assigned to the conversion reaction of MoS2 to Mo metal and Na2S [42]. In the first anodic scan, a broad oxidation peak from 1.5 to 2.0 V was observed, which corresponded to the oxidation of the Mo metal to MoS2 [28,43,44]. Furthermore, the reduction and oxidation peaks have been almost overlapped from the third cycle, suggesting the high reversibility and cycling stability of Na⁺ storage in the mPF-MoS2@G. Compared with that of mPF-MoS2@G, CV scans of mPF-MoS2 with weak cathodic peaks suggest the labile formation of SEI film and quick decline of capacities in the following cycles (Fig. S7).

Then, the galvanostatic discharge/charge voltage curves of mPF-MoS2@G at 50 mA g⁻¹ over the voltage ranges of 0.05–3.0 V (vs. Na/Na⁺) were measured (Fig. 3b). Two plateaus in the ranges of 1.4–1.0 V and 0.4–0.05 V with a slope in the range of 0.9–0.5 V were observed for the first discharge profile, and a slope at 1.5–2.0 V appeared in the first charge profile, consistent with the CV results. The initial discharge capacity of mPF-MoS2@G was up to 1470 mA h g⁻¹, much better than those of previously reported MoS2 composite anodes [28,43,44]. Instead, the initial charge capacity was 661 mA h g⁻¹. The formation of dense SEI layer, as well as the pulverization of electrode and possible side reaction due to the large pore volume and ultrathin nanosheets of mPF-MoS2@G may result in the low initial Coulombic efficiency [25,29,42]. From the
second cycle, the discharge/charge profiles are almost the same, with stable capacity retentions of 85.6%. The first cycle is an important parameter for the commercial applicability of an anode material, since the consumption of Na-ions by the anode ultimately has to be accounted for with excess capacity in the cathode of a full cell. For commercial interests, this aspect would need to be addressed in the future.

The SIB cycling performance of mPF-MoS2@G was evaluated (the data were tested from different batches of batteries and have all been optimized). As shown in Fig. 3c, at a current density of 100 mA g\(^{-1}\), compared with the mPF-MoS2 without surface graphene layers showing faster capacity fading to 62 mA h g\(^{-1}\) after 100 cycles, the mPF-MoS2@G showed a high capacity of 488 mA h g\(^{-1}\) (theoretical capacity of 670 mA h g\(^{-1}\)). According to the SEM image (Fig. S8a) after 100 cycles, the mesoporous framework of mPF-MoS2@G has been well remained. Instead, the structure of mPF-MoS2 without the protection of graphene layers has been badly destroyed (Fig. S8b), indicating the importance of graphene layers to the good cycling performance of mPF-MoS2@G. Furthermore, the rate capabilities of the two anodes were also evaluated at various current densities ranging from 50 to 1000 mA g\(^{-1}\) (1000 mA g\(^{-1}\) = 1.5 C) (Fig. 3d). The average capacities of mPF-MoS2@G were 502, 399, 353, 304 and 275 mA h g\(^{-1}\) at current densities of 50, 100, 200, 500 and 1000 mA g\(^{-1}\) separately, which are much higher than those of mPF-MoS2. When the current density returned to 50 mA g\(^{-1}\), a stable and high discharge capacity of 450 mA h g\(^{-1}\) for mPF-MoS2@G can be maintained after 30 cycles, while mPF-MoS2 showed faster capacity fading. The commercial application of an advanced SIBs needs the anode material to possess a stable cycle life. Therefore, long-term cycling test for mPF-MoS2@G at 1000 mA g\(^{-1}\) (1.2 mA cm\(^{-2}\)) was conducted (Fig. 3e). The reversible capacities of mPF-MoS2@G deliver 200 mA h g\(^{-1}\) (0.24 mA h cm\(^{-2}\)) after 1000 cycles with high Coulombic efficiency of 99.2%. Compared with the reported MoS2-based anode materials, the mPF-MoS2@G shows an advantage of long-term cycles with a stable capacity (Table S1). After 1000 cycles, although lots of the mesopores have been blocked, the basic skeleton has been kept through the SEM image (Fig. S9). The excellent discharge capacity, rate capability and cycling stability of mPF-MoS2@G can be attributed to the multiscale design in MoS2. Specially, the mesoporous MoS2 foam with sufficient void space can accelerate the sodium ion diffusion through the electrode interior and increase the contact probability of electrolyte with electrode material [29,45]. Moreover, the favorable oriented structure with abundant edge sites can facilitate the sodium ion insertion/extraction [45,46]. Finally, the coated graphene layers can not only enhance the overall electrode conductivity, but also can mitigate the mechanical stress and volume expansion accompanied with the structure destruction and aggregation of MoS2 during the discharge/charge processes [29,44,47].
In summary, we introduce a multiscale design of MoS2 anode material to maintain a high and stable capacity in SIBs. The mesoporous foam with advantages of uniform mesopores and massive edge sites can facilitate the sodium ion diffusion and insertion/extraction as well as the electrolyte contact of MoS2, which promote the MoS2 anode to exhibit a high discharge/charge capacity and a good rate performance. The thin graphene layers coating on the mesoporous foam can provide a buffer space to withstand the detrimental deformation of MoS2 and increase the overall electrode conductivity, which assist the mesoporous MoS2 foam to keep a high capacity retention. Through the strategy, the final thin graphene layers coating mesoporous MoS2 foam (mPF-MoS2@G) delivers a high discharge capacity of 488 mA h g\(^{-1}\) at 100 mA g\(^{-1}\) after 100 cycles and a reversible capacity of 200 mA h g\(^{-1}\) at 1000 mA g\(^{-1}\) after 1000 cycles with high Coulombic efficiency of 99.2% in a half-cell versus metallic sodium. The findings in the present work pave a rational way to achieve stable high-performance of MoS2 via a multiscale design, and the involved concept and strategy can be extended to other SIB anode materials.

3. Experimental procedures

3.1. Materials synthesis

To prepare the mPF-MoS2 sample, 0.4 g (NH\(_4\))\(_6\)Mo\(_7\)O\(_{24}\)\(\cdot\)4H\(_2\)O and 1.6 g SiO\(_2\) nanospheres (30 wt% SiO\(_2\) in ethylene glycol, Alfa Aesar) were dispersed in 20 mL deionized water firstly. Then, after removing the solvent, the obtained powder reacted with 10 mL CS\(_2\) in a 40 mL stainless steel autoclave at 400 °C for 4 h. The final product was gain by treating in HF (aq.) under room temperature for 5 h followed with water washing and drying processes (Caution: CS\(_2\) and HF are hazardous liquids). To further synthesize the mPF-MoS2@G sample, 50 mg mPF-MoS2 and 100 mg Trizma® base were dispersed in 80 mL deionized water and maintained by ultrasounding for 30 min. Then 32 mg dopamine hydrochloride was added followed by stirring for 5 h. After water washing and drying processes, the gain powder was treated at 600 °C under Ar atmosphere for 2 h.

3.2. Materials characterization

Scanning electron microscopy (SEM) was conducted on Hitachi S4800 and SU8220. Transmission electron microscopy (TEM), high angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) and energy dispersive X-ray (EDX) mapping were carried out on a FEI Tecnai 30 microscope and a 20 microscope operated at an accelerating voltage of 300 kV and 200 kV, respectively. The high resolution HAADF-STEM and 3D tomography were carried out on the FEI Talos F200X microscope operated at 200 kV. X-ray diffraction (XRD) measurements were conducted on a Rigaku Ultima IV diffractometer with Cu K\(_\alpha\) radiation at 35 kV and 15 mA. Raman spectroscopy was performed on a Renishaw invia Raman microscope with a 532 nm excitation laser. XANES and EXAFS were measured at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility (SSRF). N\(_2\) adsorption-desorption was measured with a Micromeritics Tristar 3020 Surface Area and Porosimetry analyzer. Thermogravimetric analysis (TGA) was performed on a TG209F1 instrument.

3.3. Electrochemical measurements

Electrochemical experiments were performed using two-electrode CR2032 coin cells. The working electrode slurry was prepared by mixing the active material, Super P, and polyvinylidene fluoride binder at a weight ratio of 6:3:1, which were then pasted onto a Cu foil current collector and dried in a vacuum oven at 60 °C for 12 h. The as-prepared electrodes possess a typical loading of the active material about 1.2 mg cm\(^{-2}\). Metallic sodium foils were used
as counter electrodes and reference electrodes, a glass fiber membrane (Whatman/F) as a separator, the solution of 1 M NaClO4 in a 1:1 vol mixture of ethylene carbonate/diethyl carbonate (EC/DEC) with 5 wt% fluoroethylene carbonate (FEC) as the electrolyte. A NEWARE battery testing system was applied to test galvanostatic discharge/charge cycles at different current densities in the voltage range of 0.05–3 V. The specific capacities described in this study were based on the total weight of mPF-MoS2 or mPF-MoS2@G. Cyclic voltammetry (CV) was measured by GAMRY instrument in a voltage range of 3–0.05 V vs. Na/Na+ at a scanning rate of 0.05 mV s⁻¹ at room temperature.

Author contributions

D. H. D. and L. Z. conceived the project and designed the experiments. J. D. performed the materials synthesis and materials characterization. C. Z. conducted the electrochemical measurements. C. M. performed the HR-HAADF-STEM and 3D tomography. Z. Q. T. and X. H. B. gave the valuable discussions and suggestions. J. D., C. Z., J. F. V. B., L. Z. and D. H. D. co-wrote the manuscript.

Acknowledgments

We gratefully acknowledge the financial support from the Ministry of Science and Technology of China (No. 2016YFA0204100, 2016YFA0200200 and 2016YFA0202604), the National Natural Science Foundation of China (No. 21573220, 21621063, 21606088 and 51621001), the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (No. QYZDB-SSW-JSC020), the “Thousand Talents Program”, and the Danish company Haldor Topse A/S. We thank staff at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facilities (SSRF) for assistance with the XANES and EXAFS measurements.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.mtener.2018.04.001.

References
